

Earth Science Technology Program (ESTP)

Presentation to ESSAAC

May 7-8, 2002

"The Committee requests that a technology assessment report be given during the next meeting, covering the specifics of future critical path technologies that are needed for the Enterprise to complete its science agenda."

George J. Komar

Program Manager

Deriving Measurement Requirements from the Research Strategy (with Science Themes)

Variability	Forcing	Response	Consequence	Prediction
Precipitation, evaporation & cycling of water changing?	Atmospheric constituents & solar radiation on climate?	Clouds & surface hydrological processes on climate?	Weather variation related to climate variation?	Weather Model forecasting improvement?
Global ocean circulation varying?	Changes in land cover & land use?	Ecosystem BIO responses & affects on global carbon cycle?	Consequences in land cover & land use?	Transient climate variations?
Global ecosystems changing?	Surface transformation?	Changes in global ocean circulation?	Coastal region change?	Model Trends in long-term climate?
CHEM Stratospheric ozone changing?		Stratospheric trace constituent responses?		Future atmospheric chemical impacts?
O&I Ice cover mass changing?		Sea level affected by climate change?		Future BIQ concentrations carbon dioxide and methane?
Motions of Earth & interior processes?		Pollution effects?	Requires systema Requires explorate Requires pre-oper	tematic & exploratory satellites tic satellite observations ory satellite observations rational and/or systematic/expl

Technology Capability for the Research Strategy Needs

Variability

Precip Radar, Radiometer, Large Antenna, Very Low Freq. Radar, On-board Processing

Precision Altimetry,
Vector Wind,
Active/Passive
Microwave

Imaging Spectroscopy, Dual Freq. Radar, Data Mining, Fusion

UV-IR Spectrography & Imaging, Lidar

Dual Freq. SAR, Lidar Altimetry, Data Mining

Gravity Gradiometer, Magnetometer

Forcing

Active Optical, Interferometry, Interoperable Data Models

Imaging
Spectrometry,
Hyperspectral, Low
Freq. Radar, Data
Mining Fusion

Hyperspectral
Imaging, Thermal, Obboard Processing/Data
Compression/Storage,
Fusion

Radiometry, SAR,
Interferometric SAR,
On-board
Processing/Data
Compression/Storage

Response

Active Optical, Data Distribution, Mining, Fusion

SAR, On-board Processing/Data Compression/Storage, Mining, Visualization

UV-IR Spectrography & Imaging, Spectrometry, On-board Processing/Data Compression/Storage

SAR Interferometry, GPS, Data Visualization

Lidar, Passive Radiometry, Data Visualization

Consequence

Precip Radar, Data Mining, Fusion

Hyperspectral, Topography, Data Distribution, Mining, Fusion

Multispectral Radiometry, Data Mining

Prediction

Real-time Data
Assimilation,
Interoperable
Data Models

Climate Modeling, Data Visualization

Long-term Climate Modeling, Data Mining, Fusion

> Atmospheric Constituent Modeling

Carbon Cycle Modeling, Data Visualization

The Path from Measurement Needs to Technology Capability

13 Meetings/Workshops (to engage the community)

- Wide Community Involvement
- Distributed across Academia, Industry and other Govt. Organizations

Capability Needs for Science, Applications and Technology (CN-SAT)

- Capture Technology Requirements and track in database

Integrated Technology Development Plan

- Plan for what technology will be developed

Focus for Technology Solicitations

NRA Solicitations	Focus
NMP EO-1 (Space Validation) '96	Validate technologies contributing to the cost reduction
	and increased capabilities for future land imaging
\$192M	missions. (Landsat data)
IIP Round 1 (Instruments) '98	Open and unconstrained; covering active and passive
27 for \$39M	optical and active and passive microwave instruments
NMP EO-3 (Space Validation) '98	Validate technologies contributing to the cost reduction
	and increased capabilities for future weather
\$105M	forecasting. (future GOES)
ATI Component Technology	Core instrument technology; covering active and passive
(ACT Round 1) '99	optical, and active and passive microwave instrument
23 for \$17M	components
AIST Round 1 (Info Systems) '99	On-board space-based information systems applications
	including data processing, organization, analysis, storage,
	and transmission; intelligent sensor and platform
30 for \$26M	control; and network configuration.
IIP Round 2 (Instruments) '01	Microwave radiometry, radar, laser/lidar instruments
11 for \$30M	·
ACT Round 2 (Components) '02 \$12M max for 3 yrs	Antenna, electronics, detectors, and optics components
AIST Round 2 / IIP Round 3	In Process for FY 03
\$18M max for 3 yrs / \$25M max for 3 yrs	

Distributed FY 01-02 Technology Investment

GSFC	(27)	•
IIP	7	
ATI	6	
AIST	2	
Proto	7	
TM	5	

JPL (35)	
IIP	13
ATI	7
AIST	8
Proto	1
TM	6/

LaRC (12) IIP 3 ATI 2 AIST 1 TM 6

Other NASA Centers (4)

ARC (AIST -1; Proto - 1) GRC (AIST - 1; Battery - 1)

NOAA(1)

IIP - 1

IIP: 38
ATI: 23
AIST: 30
Prototyping: 27
Tech. Maturation: 30
Cong. Initiative: 1
Total Awards: 148

National Labs (7)

Aerospace Corporation (ATI - 1) DOE PNNL (Proto - 1)

JHU/Applied Physics Laboratories (IIP - 2)

Draper Laboratories (AIST - 1)

Naval Research Laboratories (AIST -1)

Sandia National Laboratories (IIP - 1)

ESTO

Academia (30)

Clemson University (Proto - 1)

Colorado State U. (IIP - 1)

George Mason U. (Proto -2; TM - 1)

George Washington U. (TM - 1)

Harvard University (IIP-1)

Howard University (AIST - 1)

Johns Hopkins University (ATI -1; TM - 1)

Morgan State U. (TM - 1)

Ohio State University (IIP-1; Proto - 1)

Ohio University (AIST - 1)

Rutgers University (IIP - 1)

Stanford University (ATI - 1)

UAH (AIST -2; Proto - 1; TM - 1)

U. of Arizona (IIP -2; AIST - 1)

U. of California, Berkeley (IIP - 1)

U. of Kansas (IIP - 1; AIST -1)

U. of Kansas (IIP - 1; AIST -1

U. of Missouri (TM - 1)

U. of Virginia (Proto - 1)

U. of Washington (AIST - 2)

Large Corps. (15)

BAE Systems (IIP-1)

Ball Aerospace (ATI - 2)

CSC (Proto - 1)

ITT Industries (AIST - 1; TM - 1)

Lockheed Martin (AIST - 1; Proto -1)

Orbital Sciences Corp. (IIP - 1)

RITSS (Proto - 4)

SAIC (AIST - 1)

TRW (AIST -1)

Small Corps. (17)

AstroPower, Inc. (TM - 1)

ElectroEnergy, Inc. (TM - 1)

EcoLogic (Proto - 1)

Fibertek, Inc. (ATI - 1)

GS&T, Inc. (Proto - 1; TM - 2)

Maxwell Technologies, Inc. (AIST - 1)

Pico Dyne, Inc. (AIST -1)

Polatomic (IIP - 1)

QSS, Inc. (AIST - 1; Proto -1)

SGT (Proto - 2)

Spaceborne, Inc. (ATI - 1)

Syagen Technology, Inc. (ATI -1)

Various Vendors (TM - 1)

Technology Success Stories

6 ESSP-3 Proposals based on IIP Instruments
 Delay Doppler Phase (D2P) Radar Altimeters

 ABYSS (ocean floor)

Low Mass, Low Power Radar (OSIRIS)

HYDROS (soil moisture)

isture)

Ultra Stable Microwave Radiometer (USMR)

AQUARIUS (sea surface salinity)

OSIRIS
System
configuration

Gas and Aerosol Monitoring Sensorcraft (GAMS)
Integrated UV-IR Spectrograph and Imager (SCH₂OO₃NERS)
Wide Field Imaging Spectrometer (WFIS)

 3 AIST projects related to Open GIS Consortium (OGC) for access to Earth science data NASA Web GIS Server Web Coverage Client EOSDIS Data Pools Sensor Modeling Language OGC Service Model CEOS Data Interoperability

US

USMR: Pin diode switch assembly

Success Story: New Millennium Program (NM)

EO-1: Validation of 9 Breakthrough Technologies

- · Advanced Land Imager: reduces costs for future missions
- · Hyperion (hyperspectral imager): enables new earth science capabilities

X-Band Phased Array Antenna

Leisa Atmospheric Corrector

Advanced Land Imager

Carbon-Carbon Radiator

Wideband Advanced Recorder/Processor

Pulsed Plasma Thruster

Hyperion

Lightweight Flexible Solar Array

Enhanced Formation Flying

EO-1 Hyperion Distinguishes Crop Types

Detailed spectra allow greater potential for plant type identification than does LandSat

Soybean Field

Technology Infusion Success Stories

HAMSR in ER-2 Wing Pod

- We have infused technology into the CAMEX-4, a multi-agency field campaign to study hurricanes in August 2001.
 - Second Generation Precipitation Radar, PR-2 (airborne) flew on the DC-8.
 - High Altitude MMIC Sounding Radiometer (HAMSR) measuring temperature, water vapor and clouds flew on the NASA ER-2.

NPP In-Situ User Terminal

Current Technology Challenges

Large Deployables

Fill **Technology** Capability Gaps

Optical Comm

Communication

Dissemination of Knowledge

More Work to be Done ... Getting the Red Ou

Variability

Precip Radar, Radiometer, Large Antenna, Very Low Freq. Radar, Onboard Processing

Precision Altimetry, Vector Wind, Active/Passive Microwave

Imaging Spectroscopy, Dual Freq. Radar, Data Mining, Fusion

UV-IR Spectrography & Imaging, Lidar

Dual Freq. Radar, Lidar Altimetry, Data Mining

Gravity Gradiometer, Magnetometer

Forcing

Active Optical,
Interferometry,
Interoperable
Data Models

Imaging Spectrometry, Hyperspectral, Low Freq. Radar, Data Mining Fusion

Hyperspectral
Imaging, Thermal, Obboard Processing/Data
Compression/Storage,
Fusion

Response

Radiometry, SAR,
Interferometric SAR,
On-board
Processing/Data
Compression/Storage

Active Optical, Data Distribution, Mining, Fusion

SAR, On-board Processing/Data Compression/Storage, Mining, Visualization

UV-IR Spectrography & Imaging, Spectrometry, On-board Processing/Data Compression/Storage

SAR
Interferometry,
GPS, Data
Visualization

Lidar, Passive Radiometry, Data Visualization

Consequence

Precip Radar, Data Mining, Fusion

Hyperspectral, Topography, Data Mining, Fusion

Multispectral Radiometry, Data Mining

Prediction

Real-time Data
Assimilation,
Interoperable
Data Models

Climate Modeling, Data Visualization

Long-term Climate Modeling, Data Mining, Fusion

> Atmospheric Constituent Modeling

Carbon Cycle Modeling, Data Visualization

Summary

Critical Technologies Enabling Science

- Lightweight Microwave Radiometry to enable Global Precipitation Measurement
- Advanced Low Mass, Low Power Radar to enable Soil Moisture Measurement
- Delay Doppler Radar Altimetry to enable Ocean Bathymetry Measurement

Challenges to Enable Future Science

- Laser/Lidar technology to enable atmospheric science measurements
- Large Deployables to enable future weather/climate/natural hazards measurements
- Intelligent Distributed Systems using optical communication, on-board reprogrammable processors, autonomous network control, data compression, high density storage
- Information Knowledge Capture through 3-D Visualization, holographic memory and seamlessly linked models.

http://esto.nasa.gov